
Cycloaddition of Carbon Dioxide to Propyne over Supported Rh₄ and Fe₂Rh₄ Carbonyl Cluster-derived Catalysts

S. Muthukumaru Pillai, Ryuichiro Ohnishi, and Masaru Ichikawa*

Catalysis Research Center, Hokkaido University, Sapporo 060, Japan

 Rh_4 and Fe_2Rh_4 carbonyl cluster-derived catalysts supported on selected metal oxides such as TiO₂, Al_2O_3 , and ZrO_2 exhibit catalytic activity in the formation of 4,6-dimethyl-2-pyrone by the cycloaddition of carbon dioxide to propyne under moderate conditions.

Catalytic conversion of carbon dioxide into useful organic chemicals¹ is receiving much attention from the global environmental and carbon resource utilization points of view. One example is the hydrogenation of CO_2 to methane and methanol² on metal catalysts. Several transition metal complexes such as $Rh(diphos)(\eta - BPh_4)^3$ [diphos = 1,2-bis(diphenylphosphino)ethane] and $Ni(COD)_2Ph_2P(CH_2)_4PPh_2^{1}$ (COD = cyclo-octa-1,5-diene) have been reported to catalyse cycloaddition of CO₂ to acetylenic compounds to yield pyrone derivatives in the liquid phase with low conversion and poor selectivity. Recent publications on syntheses of (COD)-Rh₂OsH₂CO₂(PMe₂Ph)₃⁴ and $[HOs_3(CO)_{10} \cdot O_2C \cdot Os_6 (CO)_{17}$ [[$(Ph_3P)_2N$]⁵ suggest that it is possible to activate the dipolar substrate CO₂ on metal carbonyl clusters. While exploring novel heterogeneous catalysts for CO₂ fixation we have used homo- and hetero-nuclear metal clusters as precursors for preparing well-characterised and highly dispersed metal particles on metal oxide supports.6 We report here that CO₂ was incorporated into the propyne dimer to give a cycloaddition product, 4,6-dimethyl-2-pyrone, over mildly oxidised Rh₄ and Fe₂Rh₄ clusters supported on metal oxides such as SiO_2 , Al_2O_3 , TiO_2 , and ZrO_2 .

 $Rh_4(CO)_{12}$, $[TMBA]_2[Fe_2Rh_4(CO)_{16}]$ $[TMBA = NMe_3-(CH_2Ph)]$, and $[TMBA]_2[Fe_3(CO)_{11}]$ were synthesized as reported in the literature.⁷ Each carbonyl cluster was impregnated on the metal oxide support from hexane or tetrahydrofuran (THF) solution under N₂. After removal of the solvent the impregnated catalyst was tested for the cycloaddition reaction. This catalyst was mildly activated under flowing O₂ at 25 °C for 10 h to give the mildly oxidised catalyst. The catalyst was also treated by further oxidation at 150 °C for 2 h and subsequently reduced under H₂ with programmed heating from 25 to 400 °C for 10 h.

Oligomerization of propyne in the presence of CO_2 [equation (A)] was conducted in a stainless steel reactor under a total pressure of 60 kg cm⁻². The products were 4,6dimethyl-2-pyrone (1), 1,3,5-(2), and 1,2,4-trimethyl benzene (3), and other oligomers which were analysed by FID GC (Shimadzu 14A) using a silicone OV-101 capillary column at 50—90 °C. Formation of 4,6-dimethyl-2-pyrone was confirmed by comparing the IR spectra of the product sample with those of an authentic sample⁸ exhibiting characteristic carbonyl absorptions at 1706 and 1725 cm⁻¹, GC retention times (23.16 min compared to 23.14 min for authentic sample), and the mass spectrum (m/z 124, M^+). The pyrone (1) was formed only in the presence of CO₂, whereas (2), (3), and other oligomers were produced in a N₂ atmosphere under similar reaction conditions.

The activities for pyrone and propyne cyclotrimer formation on various catalysts are shown in Table 1. From Table 1 it is clear that mildly oxidised Rh_4/SiO_2 gives pyrone (1) as a cycloaddition product whereas the reduced form of the catalyst is inactive. To study the influence of supports,

Table 1. Oligomerization and cycloaddition of CO_2 to propyne on su	pported Rh ₄ and Fe ₂ Rh ₄ carbonyl cluster-derived catalysts. ^a
--	--

			T.O.F. of Propyne ($\times 10^{-4}$) to			(3)/(3)
Precursor	Support	Pretreatmente	(1)	(2)	(3)	(3)/(2) (mole/mole)
$\frac{\text{Rh}_4(\text{CO})_{12}}{\text{Rh}_4(\text{CO})_{12}}$	SiO ₂ SiO ₂	M.Ox Red	4.7 (1)	104.4 (29) 13.9 (34)	$\begin{array}{ccc} 249 & (70) \\ 26.8 & (66) \end{array}$	2.4 1.9
$\begin{array}{c} Rh_4(CO)_{12} \\ Rh_4(CO)_{12} \end{array}$	TiO_2 ZrO_2	M.Ox M.Ox	11.4 (6) 16.2 (3)	59.3 (24) 127 (27)	170 (70) 339 (70)	2.9 2.6
$\begin{array}{c} Rh_4(CO)_{12} \\ Rh_4(CO)_{12} \\ Rh_4(CO)_{12}^{b} \\ Rh_4(CO)_{12} \\ Rh_4(CO)_{12} \\ Rh_4(CO)_{12} \end{array}$	γ-Al ₂ O ₃ MgO MgO SiO ₂ -Al ₂ O ₃ SiO ₂ -MgO	M.Ox M.Ox M.Ox M.Ox M.Ox	35 (4) traces 4.7 (1) 	251 (28) 20.9 (29) 173 (31) 333 (25) 152 (20)	600(68)52(71)377(68)979(75)594(80)	2.4 2.5 2.9 2.9 2.9
$ \begin{array}{c} [TMBA]_2 [Fe_2 Rh_4 (CO)_{16}]^c \\ [TMBA]_2 [Fe_2 Rh_4 (CO)_{16}]^d \\ [TMBA]_2 [Fe_2 Rh_4 (CO)_{16}]^d \\ [TMBA]_2 [Fe_2 Rh_4 (CO)_{16}]^d \end{array} $	SiO_2 SiO_2 SiO_2 SiO_2 SiO_2	M.Ox Imp M.Ox Red	99.8 (8) 19.6 (3) 29.2 (5)	299 (22) 219 (23) 245 (30) 24 (31)	955 (70) 693 (74) 537 (65) 54.1 (69)	3.2 3.2 2.2 2.2

^a Conditions: Rh loading = 2 wt%, propyne = 0.0132 mole, Rh:propyne(mole/mole) = 1:135, propyne: $CO_2 = 1:8$, total pressure = 60 kg cm⁻² (27 °C), 130 °C, 10 h. The values in parentheses are mole% selectivities [*e.g.*, (1) × 100/(1) + (2) + (3)]. ^b 190 °C. ^c Total metal loading = 4 wt% (Rh = 3.15 wt%), propyne: $CO_2 = 1:10, 120$ °C, 16 h, Rh:propyne = 1:200. ^d Total metal loading = 2.53 wt% (Rh = 2 wt%). ^e M.Ox = mildly oxidised, Red = reduced, Imp = impregnated.

catalysts were prepared by impregnating $Rh_4(CO)_{12}$ on different metal oxides. It was found that on a neutral SiO_2 support the selectivity to pyrone is minimum while a basic support, MgO, at the same reaction temperature suppresses the conversion possibly due to the use of CO_2 in forming CO_3^{2-} on the support. When the reaction temperature is increased to 190 °C the turn over frequency (T.O.F.) of products on Rh₄(CO)₁₂/MgO are improved to give the same selectivity as found with the SiO₂ support. It is of interest to find that TiO₂, ZrO_2 , and γ -Al₂O₃, which exhibit acid-base character, promote pyrone formation. With these supports the T.O.F.s of pyrone are in the decreasing order γ -Al₂O₃ > $ZrO_2 > TiO_2$. The basic surface hydroxy groups on these supports react with $Rh_4(CO)_{12}$ to give $Rh_6(CO)_{16}^{9}$ and Rh^{1} - $(CO)_2$ species bound to the surface of oxides. Rh₄ impregnated on strongly acidic oxide supports such as SiO₂-Al₂O₃ and SiO₂-MgO provides cyclotrimers preferentially, implying that rhodium metal ions on acidic supports are highly active towards oligomerization but not suitable for pyrone formation.

The bimetallic carbonyl cluster $[NMe_3(PhCH_2)]_2 [Fe_2Rh_4-(CO)_{16}]$ impregnated on SiO₂ is used to investigate the influence of the Fe ion as a promoter. Using this catalyst, after mild oxidation, the T.O.F. and selectivity to pyrone improved substantially compared to the Rh₄ cluster-derived catalyst. However, the reduced catalyst lost practically all its catalytic activity. The mildly oxidised Fe₃ cluster-derived catalyst has essentially no activity for the reaction. These results suggest that the Fe in the Fe₂Rh₄ cluster-derived catalyst promotes the stabilization of partially oxidised Rh (probably Rh⁺) through a Rh–Fe–O bond as reported previously^{10,11} and so enhances the trimerization and pyrone formation.

In conclusion, the supported Rh_4 and Fe_2Rh_4 carbonyl cluster-derived catalysts are active towards the cycloaddition of CO_2 to propyne to give 4,6-dimethyl-2-pyrone. We suggest that pyrone is produced on a cationic rhodium metal centre

bound to a basic site (O^{2-} or OH^{-}) on the oxide support. The role of Fe in Rh–Fe bimetallic cluster-derived catalyst may be associated with the stabilization of cationic Rh and providing suitable basic O^{2-} sites to promote the cycloaddition of CO_2 .

S. M. P. is on leave from the Research Centre, Indian Petrochemicals Corporation Ltd., India.

Received, 25th September 1989; Com. 9/04096J

References

- 1 A. Behr, 'Carbon dioxide activation by metal complexes,' VCH, Weinheim, 1988.
- 2 V. M. Vlascenco and G. E. Yuzefovich, Russ. Chem. Rev., 1969, 38, 728; M. Ichikawa and K. Shikakura, Proc. 7th Int. Cong. Catal., Tokyo, vol. 2, 1980, 925.
- 3 P. Albano and M. Aresta, J. Organomet. Chem., 1980, 190, 243.
- 4 E. G. Lindquist, J. C. Huffman, and K. G. Caulton, J. Am. Chem. Soc., 1986, 108, 8309.
- 5 C. R. Eady, J. J. Guy, B. F. G. Johnson, J. Lewis, M. C. Malatesa, and G. M. Sheldrick, J. Chem. Soc., Chem. Commun., 1976, 602.
- 6 M. Ichikawa, in 'Tailored Metal Catalysts,' ed. Y. Iwasawa, D. Reidel, Dordrecht, 1986, 183; M. Ichikawa, *Polyhedron*, 1989, 7, 2351.
- 7 J. A. McCleverty and G. Wilkinson, *Inorg. Synth.*, 1966, 8, 211; P. Chini and S. Martinengo, *Inorg. Chim. Acta*, 1969, 315; A. Ceriotti, G. Longoni, R. D. Pergola, B. T. Heaton, and D. O. Smith, *J. Chem. Soc., Dalton Trans.*, 1983, 1433; H. A. Hodali and D. F. Shriver, *Inorg. Synth.*, 1980, 20, 222.
- 8 R. W. Wiley and N. R. Šmith, J. Am. Chem. Soc., 1951, 73, 3533;
 K. Yamada, Bull. Chem. Soc. Jpn., 1962, 35, 1323.
- 9 G. C. Smith, T. P. Chojnacki, S. R. Dasgupta, K. Iwatate, and W. L. Watters, *Inorg. Chem.*, 1975, 14, 1419.
- 10 M. Ichikawa, A. Fukuoka, and T. Kimura, Proc. 9th Int. Cong. Catal., Calgary, vol. 1, 1988, 569; T. Kimura, A. Fukuoka, and M. Ichikawa, *Catal. Lett.*, 1989, 2, 227.
- 11 M. Ichikawa, T. Fukushima, T. Yokoyama, N. Kosugi, and H. Kuroda, J. Phys. Chem., 1986, 90, 1222.